首页> 外文OA文献 >Additive Chow groups with higher modulus and the generalized de Rham-Witt complex
【2h】

Additive Chow groups with higher modulus and the generalized de Rham-Witt complex

机译:添加剂Chow基团具有较高的模量和广义de   Rham-Witt复杂

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bloch and Esnault defined additive higher Chow groups with modulus (m+1) onthe level of zero cycles over a field k, denoted by TH^n(k,n;m), n,m >0. Theyprove that TH^n(k,n;1) is isomorphic to the group of absolute Kaehlerdifferentials of degree n-1 over k. In this paper we generalize their resultand show that TH^n(k,n;m) is isomorphic to W_m\Omega^{n-1}_k, the group ofdegree n-1 elements in the generalized de Rham-Witt of length m over k. Thiscomplex was defined by Hesselholt and Madsen and generalizes the p-typical deRham-Witt complex of Bloch-Deligne-Illusie. Before we can prove this theorem wehave to generalize some classical results to the de Rham-Witt complex. We givea construction of the generalized de Rham-Witt complex for\bbmath{Z}_(p)-algebras analogous to the construction in the p-typical case. Weconstruct a trace for finite field extensions L / k and if K is the functionfield of a smooth projective curve C over k and P in C is a point we define aresidue map Res_P: W_m\Omega^1_K --> W_m(k), which satisfies a"sum-of-residues-equal-zero" theorem.
机译:布洛赫(Bloch)和埃斯诺(Esnault)在字段k上的零周期水平上用模数(m + 1)定义了加性较高的Chow组,表示为TH ^ n(k,n; m),n,m> 0。他们证明TH ^ n(k,n; 1)与k上n-1度的绝对Kaehler微分群是同构的。在本文中,我们推广了它们的结果,并证明TH ^ n(k,n; m)与W_m \ Omega ^ {n-1} _k同构,W_m \ Omega ^ {n-1} _k是广义de Rham-Witt中长度为m的n-1个元素的组超过k该复合物由Hesselholt和Madsen定义,并推广了Bloch-Deligne-Illusie的p型deRham-Witt复合物。在证明该定理之前,我们必须将一些经典结果推广到de Rham-Witt复数。我们给出了\ bbmath {Z} _(p)-代数的广义de Rham-Witt复数的构造,类似于在p型情况下的构造。我们构造了一个有限域扩展L / k的迹线,如果K是k上光滑射影曲线C的函数域,而C中的P是一个点,则我们定义了残渣图Res_P:W_m \ Omega ^ 1_K-> W_m(k),满足“残差总和等于零”定理。

著录项

  • 作者

    Rülling, Kay;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号